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Abstract-A correlation is made of recovery factor data for circular cylinders of high thermal conductivity 
in the stagnation Reynolds number range 10’ -K Reo -=z lo4 and Mach number range 0 < M < 5. The 
recovery factor is found to be dependent on the Reynolds number in the subsonic region and the data 
show discontinuities in the transonic region. Empirical formulae are presented for the subsonic and 
supersonic region separately, as well as an overall formula. The accuracy of the formulae proposed is 

about 0.2%. 

NOMENCLATURE 

specific heats; 
drag coefficient; 
diameter of the cylinder; 
function of Reynolds, r(Pr, Re)/(Pr)*; 
thermal conductivity; 
Knudsen number, = k/d; 
Mach number, = U/(yRT)*; 
Prandtl number, = c,,u/k; 
function of Pr and Re, 2cp( T, - T)/u2; 
ideal gas constant; 
Reynolds number, = pUd/p( T); 
gas temperature; 
measured cylinder temperature; 
velocity of the gas. 

Greek symbols 

YT ratio of specific heats, = c,/c,; 

% recovery ratio, = Tm/To; 
x 

1, normalized recovery ratio, = (q - qc)/(vr - Q); 
1, molecular mean free path; 

u viscosity; 

P, density. 

Subscripts 

c, value for continuum flow; 

.f? value for free molecular flow; 
0, value at stagnation conditions; 
No subscript, = free stream conditions. 

INTRODUCTION 

THE HOT wire and the “free” thermocouple are im- 
portant tools for total temperature measurements in 
compressible air flow. Examples of the use of free 
thermocouples are the works of Yanta [l], Behrens [2] 
and Vas [3]. Figure 1 represents a typical free thermo- 
couple probe. The use of such probes for total tem- 
perature measurements is based on an accurate knowl- 
edge of the recovery factor q of an infinite cylinder of 
high thermal conductivity placed perpendicular to a 
uniform flow, as a function of the flow parameters y, M, 
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ceramic tube 

-;:!y” 
FIG. 1. Typical probe 

Re and Pr. The recovery factor is defined as the ratio of 
the measured cylinder temperature T, to the free stream 
total temperature To of the gas. 

Dewey [4] has shown for supersonic flow, that q can 
be calculated from : 

? = rlc + ?“(rl/ - %I (1) 

where q”, the normalized recovery factor, is a function 
of the free stream Knudsen number Kn only. Kn is 
defined as: 

Kn = (ny/2)‘12(M/Re. (2) 

Dewey [4] proposed as a correlation formula for 1x1 

$= Kn1.193/(0.493+Kn’.‘93). (3) 

In order to estimate q from formula (1) he used for 
q/the theoretical value calculated by Stalder et al. [5]. 
For qe he proposed a correlation formula based on 
his experimental estimation of the hypersonic limit of 
Q, and the data collected by Morkovin [6]. The corre- 
lation formula obtained by Dewey [4] for Q is: 

qE = 1 -0.05M3.5/(1.175+ M3.5). (4) 

The nominal accuracy of this formula is 0.4%. The 
formula should be valid for the full range of Mach 
numbers from zero to infinity. 

In our measurements of the total temperature in a 
free jet we found significant deviations from the formula 
of Dewey [4], 2% in the transonic region and 1% in 
the supersonic region. Extensive measurements were 
made with thermocouples in a Reynolds number range 
of 102-104. The data obtained are in excellent agree- 
ment with data collected in the literature. 
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This investigation showed that at Reynolds numbers qc at M = 0.6. This Mach number was chosen because 
higher than 1, the recovery factor in subsonic flow it is the Mach number at which the maximum data 
shows a Reynolds number dependence which cannot were available and for which the transonic effects are 
be described by a rarefaction parameter such as Kn. not dominant. Because we did not have a full descrip- 
This Reynolds number dependence is a result of the tion of the measurements of Eckert and Weise [lo] and 
separation of the boundary layer and the change in Spangenberg [14], we had to make some assumptions 
the structure of the wake as Re increases. in order to estimate the Reynolds number of these data. 

In this paper we shall give our own data as well as The Reynolds number of the data of Spangenberg 
the data which we collected from the literature. As a wasestimated by supposing that the Reynolds numbers 
conclusion, correlation formulae will be proposed. The ofthe measurements with d = O.OOOlS in were equal to 
accuracy of these formulae is about 0.2?,. the Reynolds number of the data of Vrebalovich [133 

Formula d (m) Kll Ref. 

--- (41 

2X1O-4 lO-4 PI 
(5),(7) 

M 

FIG. 2. Comparison of the data with the correlation formulae. 

MEASUREMENTS AND COLLECTED DATA 

Our measurements were made in three different 
types of apparatus: 

(a) A free jet with fixed Lava1 nozzles of 1.5cm dia. 
(Mach numbers, M = 1, 1.75, 2.05 and 2.65.) 

(b) A blow-down tunnel with fixed Lava1 nozzle 
(M = 2.04), test section 4 x 4cmZ. 

(c) A blow-down tunnel with variable Laval nozzle 
(M up to 4), test section 27 x 27cm’. 

To was of the order of magnitude of 270K. Various 
probes and electronic equipment were used. 

Some transonicmeasurements were made with a wire 
stretched across the free jet, in order to estimate the 
influence of the body of the probe on the flow. The 
effects of end losses were estimated by me~uring the 
temperature of the needles of the probe and using a 
one-dimensional model like the one used by Yanta [l]. 

As a check, measurements were made with different 
length to diameter ratios of the wires, and with an 
asymmetrical junction, i.e. not in the middle of the wire. 
Details of the me~urements procedure can be found 
in Hirschberg [7]. 

The subsonic and supersonic data used to establish 
the correlation formulae are given in Fig. 2 and Fig. 3. 
In Fig. 4 the data collected by Stickney [8], Eber [9], 
Eckert and Weise [lo], Laufer and McClellan [l l], 
Vrebalovich [13] and Spangenberg [14] are given. In 
Fig. 5 a graph is given of the Reynolds dependence of 

FIG. 3. Subsonic data at Reo r 5 x lo*. Influence of the 
probe: O-wirestretched across free jet; I-probe in free jet. 

for Kn = 2.5 x lo-’ (see Fig. 4). The order of magni- 
tude of the Reynolds number obtained this way is in 
agreement with the order of magnitude estimated from 
the data about p, M and d given in [14]. 
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FIG. 6. Reynolds dependence of Co at low Mach numbers 
after M. Morkovin [19]. 
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The Reynolds number of the data of Eckert and 

Weise [lo] was estimated by comparison with measure- 
ments of Hirschberg [7] and Stickney [S]. The value 
of 11 at Reynolds of the order of 10’ was estimated by 
using local heat transfer and recovery factor data of 
respectively Schmidt and Wenner [ 161 and Eckert and 
Weise [ 151. 

Some of the data of Spangenberg [14] were not 
considered because of the end losses effect. This explains 

why we did not use his supersonic data. The subsonic 
data for the 0.0003 in Pt wire of Spangenberg [14] seems 
to suffer important end losses. The subsonic data for 

the 0.015in Pt wire seems quite unreliable. These two 
data are represented in Fig. 5 by a 0 instead of a 0. 

It is interesting to compare the data of Fig. 5 with 

mean drag coefficient data (see Fig. 6). From com- 
parison it becomes clear that the “jumps” in Q for 

Re = 40 and for Re = 5000 correspond to major 
changes in the flow pattern (namely the formation of 
the von Karman vortex street and the appearance of 
turbulence in the wake). For lo4 < Re < lo5 the re- 
covery factor is expected to be fairly constant. This is 
due to the fact that the structure of the wake does not 
show important changes in this region. For Reynolds 

numbers smaller than 40, the Reynolds number depen- 
dence is essentially due to rarefaction effects. As we 
see from Fig. 5 this effect is correctly correlated by 
formula (1). We used for Q a value estimated from the 
value of q measured by Vrebalovich [ 131 at Kn = 0.025. 
The correction of this value was obtained by using 
formula (1) iteratively. 

As a check for the order of magnitude of the hyper- 

sonic limit of Q, we calculated Q at M = 5 from the 
data of Wagner [17] by using formula (1) in order to 

estimate the rarefaction effects. We found rlC (M = 5) = 
0.938. This value is close to the value deduced from 
formula (11) (see next section). Details can be found in 
Hirschberg [7]. 

CORRELATION FORMULAE 

Because the flow structure at subsonic speeds is 

essentially different from the one at supersonic speeds, 
it seems reasonable to use two correlation formulae, 
one for each region. 

We decided to use a power series in M in the subsonic 

region. In order to select a set of terms as linearly 
independent of each other as possible we first calcu- 
lated the correlation coefficients between the powers 
of M. From this analysis it followed that the best 
results could be obtained with powers of MZ only and 
that powers higher than M4 were not useful. 

For Reynolds numbers of the order of 3 x lo3 we 
obtained by least squares: 

v/ = 1 -0.070M2+ 0.036M 4 (5) 

for M < 1. The standard deviation is 2 x 10m3. 
For other Reynolds numbers the data were not 

sufficient to establish an accurate correlation formula 
for the subsonic region. We shall establish a formula 
which is only valid at low Mach numbers (M < 0.6). 
We use as basis the fact that for low Mach numbers 
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and high Reynolds numbers the temperature T, is 

expected to be given by: 

T, g T+r(Pr, Re):. 
P 

(6) 

Where r is a function of Re through the dependence 

of the flow configuration on Re. This formula, obtained 
by equating the dissipation in the boundary layer of 

the cylinder to the heat flux through this boundary 

layer, is derived by Landau and Lifschitz [lS]. Using 
the definitions for 1 and M and the relation between 
T and To for an ideal gas with constant specific heat 
ratio y we obtain: 

At low Mach number we can use the following 
approximation : 

q -L+(r-l)(~)M’f(l-r)($!~M4. (8) 

As a first guess and by analogy with the recovery factor 
of a flat plate we can try: 

r(Pr, Re) = (Pr)“*F(Re). (9) 

The function F(Re) was estimated from the data 
collected in Fig. 5. 

F(Re) = 
4.3 x 103+0.7Re 

4.7 x 103+Re ’ 
(10) 

For M < 0.6 and 100 < Re < 10’. This formula should 
only be considered as a first attempt to get an estimation 
of the Reynolds number dependence of r~ at low Mach 
numbers. 

In the transonic region (0.5 < M < 1.2) the data 
show discontinuities (see Fig. 2). We expect these dis- 
continuities to correspond with major changes in the 

flow pattern such as the inversion of the pressure 
gradient and the disappearance of the von Karman 
vortex street when the flow becomes supersonic. The 
shape of the curve depends strongly on the Reynolds 
number (see Fig.4). The data show an important scatter 
in this region (up to 0.5%). Since the shape of the dis- 
continuities is not reproducible we decided that it was 
not useful to compute a correlation function of the 
data in the transonic region. 

At hypersonic speeds one expects the recovery factor 
to approach a limit asymptotically. For this reason we 
decided to use in the supersonic region a power 
series in M- l. Further we used the same procedure as 
for the subsonic case in order to select an optimal set 
of powers and optimal coefficients. The supersonic data 
showed a negligible Reynolds number dependence. We 
obtained : 

~,=0.941+0.052M-2-0.027M-4 (11) 

for M > 1 and lo* < Reo < 104. The standard devi- 
ation is of the order of 0.2%. 
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In addition to these two separate correlation for- 
mulae, an overall correlation function similar to the 
one used by Dewey [4] was also estimated by least 
squares : 
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rjc = 1 - 0.057W8/(0.75 + i&8). (12) 

The standard deviation is of the order of 0.3%. The 
formula is valid for Mach numbers up to 4 and 
Reynolds numbers between 10’ and 104. 

CONCLUSION 

Improved correlation formulae (5) and (1 l)-( 12) for 
the continuum limit of the recovery factor of an infinite 
cylinder of high thermal conductivity placed perpen- 
dicular to an air flow are proposed. The accuracy of 
the formulae is 0.2%. 

In the subsonic region the recovery factor depends 
on the Reynolds number [see Figs. 5, 6 and formula 

wol. 
This Reynolds number dependence seems to be a 

result of the flow separation and the formation of a 
turbulent wake for Reynolds numbers increasing from 
1 to 105. 

Because we expect a discontinuous behavior of q, 
for accurate subsonic measurements special attention 
must be paid to the region of Re - 50. 

As our formulae are based on data below M = 5 
there is some doubt about the hypersonic limit which 
we found: $rnm Q = 0.941, and further measurements + 

would be desirable. 
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DONNEES EXPERIMENTALES SUR LE FACTEUR THERMIQUE PARIETAL 
D’UN CYLINDRE AUX NOMBRES DE REYNOLDS ELEVES 

R&umB-Une relation est don& pour le facteur thermique pari&al relatif g des cylindres circulaires de 
conductivitC thermique &levQ, pour un domaine de nombre de Reynolds, aux conditions gQl&ratrices, 
compris entre lo* et 104, et pour un nombre de Mach 0 < M < 5. On trouve que le facteur thermique 
pari&al d&pend du nombre de Reynolds dans la r&ion subsonique et les donn&es montrent des dis- 
continuitb dans la rQion transonique. On prbente des formules empiriques stparhent pour les 
regions subsonique et supersonique aussi bien qu’une formule globale. La precision des formules propos&s 

est de l’ordre de 0,2x. 

EINE KORRELATION VAN “RECOVERY”-TEMPERATUR-DATEN FUR ZYLINDER IN 
EINER KOMPRESSIBELEN STRC)MUNG BE1 HOHEN REYNOLDSZAHLEN 

Zusammenfassung-Eine Korrelation wird gemacht von “recovery” Faktor Daten vor kreisfijrmiger 
Zylinder von hoher thermischer Leitfghigkeit in einem Bereich der Stagnations-Reynolds-Zahl von 
10’ < Re < lo4 und Mach’sen Kenngriissen 0 < M < 5. Der “recovery” Faktor wird abhtingig gefunden 
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von der Reynolds Zahl im subsonem Gebiet und die Daten zeigen Diskontinuitaten im transonem 
Bereich. Fiir den subsonen und den supersonen Bereich werden die zugehiirigen Gleichungen angegeben. 
Ferner wird eine allgemeinere Formel fur die beide Gebiete vorgestellt. Die Genauigkeit dieser Formeln 

ist zirka 0.2%. 

OPOBIIJEHHE &4HHbIX l-IO TEMIIEPATYPE BOCCTAHOBJIEHWI )JJUI 
4kiJIkiHAPOB B l-IOTOKE CmWMAEMOfi lKtiJI,KOCT’U IIPM EOJIbIIIllX 

3HAYEHkiIIX =IklCJ-IA PEnHOJIbACA 

~O'IWRH--pOBeAeIiO o6o6ueme AaHHbIX II0 K03@&iUHeHTy BOCCTaHOBJIeHHS AASI KpyDlbIX 

ASiJUfIiApOB C BbICOKO# TeIIJIOIIpOBOABOCTbEO B AAaITa3OHaX 3HaYeHHti 'EiCAa Pe&iOAbACa 

lo’< ReO< lo4 H 3Ha¶emi vHcna MaxaO< M<5. HatiAeHo,S~o B Ao3~yxoaoft o6nacm Teqem 

K03&&JieHT BOCCTaHOBAeHmI ~~BHCBT OT Sicna PetiOnbACa. B TpaAC3ByKOBOti o6nacm Ha6Jno- 
AaIOTCff pa3pbIBJLnPeACTaBJIeHbI 3htfIEiPIi’ieCKHe @OpMyJIbIOTAeJIbHO AJIRA03ByKOBOtiWCBePX3By- 

KOBOfi o6nacTeti H o6uIax @OpMyna AJIX AEiBna30HOB. TOWOCTb IIpeAJIomeHHbIx @OpMyJI COCTa- 

BnJIeT 0,2x. 


